3.2.2 \(\int \frac {1}{x \sqrt {a x+b x^4}} \, dx\) [102]

3.2.2.1 Optimal result
3.2.2.2 Mathematica [C] (verified)
3.2.2.3 Rubi [A] (verified)
3.2.2.4 Maple [C] (verified)
3.2.2.5 Fricas [C] (verification not implemented)
3.2.2.6 Sympy [F]
3.2.2.7 Maxima [F]
3.2.2.8 Giac [F]
3.2.2.9 Mupad [F(-1)]

3.2.2.1 Optimal result

Integrand size = 17, antiderivative size = 497 \[ \int \frac {1}{x \sqrt {a x+b x^4}} \, dx=\frac {2 \left (1+\sqrt {3}\right ) \sqrt [3]{b} x \left (a+b x^3\right )}{a \left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right ) \sqrt {a x+b x^4}}-\frac {2 \sqrt {a x+b x^4}}{a x}-\frac {2 \sqrt [4]{3} \sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{a^{2/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x+b x^4}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} a^{2/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x+b x^4}} \]

output
2*b^(1/3)*x*(b*x^3+a)*(1+3^(1/2))/a/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))/(b*x^4 
+a*x)^(1/2)-2*(b*x^4+a*x)^(1/2)/a/x-2*3^(1/4)*b^(1/3)*x*(a^(1/3)+b^(1/3)*x 
)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1 
/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))*Ellipt 
icE((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2 
)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/ 
(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/a^(2/3)/(b*x^4+a*x)^(1/2)/(b^(1/3 
)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)-1/3*b^(1/ 
3)*x*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/ 
3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3 
)*x*(1+3^(1/2)))*EllipticF((1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b 
^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(1-3^(1/2))*((a^(2 
/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2 
)*3^(3/4)/a^(2/3)/(b*x^4+a*x)^(1/2)/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3 
)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)
 
3.2.2.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.10 \[ \int \frac {1}{x \sqrt {a x+b x^4}} \, dx=-\frac {2 \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{6},\frac {1}{2},\frac {5}{6},-\frac {b x^3}{a}\right )}{\sqrt {x \left (a+b x^3\right )}} \]

input
Integrate[1/(x*Sqrt[a*x + b*x^4]),x]
 
output
(-2*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[-1/6, 1/2, 5/6, -((b*x^3)/a)])/S 
qrt[x*(a + b*x^3)]
 
3.2.2.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 530, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.412, Rules used = {1931, 1938, 851, 837, 25, 766, 2420}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt {a x+b x^4}} \, dx\)

\(\Big \downarrow \) 1931

\(\displaystyle \frac {2 b \int \frac {x^2}{\sqrt {b x^4+a x}}dx}{a}-\frac {2 \sqrt {a x+b x^4}}{a x}\)

\(\Big \downarrow \) 1938

\(\displaystyle \frac {2 b \sqrt {x} \sqrt {a+b x^3} \int \frac {x^{3/2}}{\sqrt {b x^3+a}}dx}{a \sqrt {a x+b x^4}}-\frac {2 \sqrt {a x+b x^4}}{a x}\)

\(\Big \downarrow \) 851

\(\displaystyle \frac {4 b \sqrt {x} \sqrt {a+b x^3} \int \frac {x^2}{\sqrt {b x^3+a}}d\sqrt {x}}{a \sqrt {a x+b x^4}}-\frac {2 \sqrt {a x+b x^4}}{a x}\)

\(\Big \downarrow \) 837

\(\displaystyle \frac {4 b \sqrt {x} \sqrt {a+b x^3} \left (-\frac {\left (1-\sqrt {3}\right ) a^{2/3} \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {x}}{2 b^{2/3}}-\frac {\int -\frac {2 b^{2/3} x^2+\left (1-\sqrt {3}\right ) a^{2/3}}{\sqrt {b x^3+a}}d\sqrt {x}}{2 b^{2/3}}\right )}{a \sqrt {a x+b x^4}}-\frac {2 \sqrt {a x+b x^4}}{a x}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {4 b \sqrt {x} \sqrt {a+b x^3} \left (\frac {\int \frac {2 b^{2/3} x^2+\left (1-\sqrt {3}\right ) a^{2/3}}{\sqrt {b x^3+a}}d\sqrt {x}}{2 b^{2/3}}-\frac {\left (1-\sqrt {3}\right ) a^{2/3} \int \frac {1}{\sqrt {b x^3+a}}d\sqrt {x}}{2 b^{2/3}}\right )}{a \sqrt {a x+b x^4}}-\frac {2 \sqrt {a x+b x^4}}{a x}\)

\(\Big \downarrow \) 766

\(\displaystyle \frac {4 b \sqrt {x} \sqrt {a+b x^3} \left (\frac {\int \frac {2 b^{2/3} x^2+\left (1-\sqrt {3}\right ) a^{2/3}}{\sqrt {b x^3+a}}d\sqrt {x}}{2 b^{2/3}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \sqrt {x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{a \sqrt {a x+b x^4}}-\frac {2 \sqrt {a x+b x^4}}{a x}\)

\(\Big \downarrow \) 2420

\(\displaystyle \frac {4 b \sqrt {x} \sqrt {a+b x^3} \left (\frac {\frac {\left (1+\sqrt {3}\right ) \sqrt {x} \sqrt {a+b x^3}}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}-\frac {\sqrt [4]{3} \sqrt [3]{a} \sqrt {x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} E\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}}{2 b^{2/3}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \sqrt {x} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{a \sqrt {a x+b x^4}}-\frac {2 \sqrt {a x+b x^4}}{a x}\)

input
Int[1/(x*Sqrt[a*x + b*x^4]),x]
 
output
(-2*Sqrt[a*x + b*x^4])/(a*x) + (4*b*Sqrt[x]*Sqrt[a + b*x^3]*((((1 + Sqrt[3 
])*Sqrt[x]*Sqrt[a + b*x^3])/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x) - (3^(1/4) 
*a^(1/3)*Sqrt[x]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + 
 b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticE[ArcCos[(a^( 
1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + 
 Sqrt[3])/4])/(Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + (1 + Sqrt 
[3])*b^(1/3)*x)^2]*Sqrt[a + b*x^3]))/(2*b^(2/3)) - ((1 - Sqrt[3])*a^(1/3)* 
Sqrt[x]*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)* 
x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 
 - Sqrt[3])*b^(1/3)*x)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3]) 
/4])/(4*3^(1/4)*b^(2/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/3) + 
(1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/(a*Sqrt[a*x + b*x^4])
 

3.2.2.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 766
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/ 
(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*((s + 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])* 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x 
]
 

rule 837
Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 
3]], s = Denom[Rt[b/a, 3]]}, Simp[(Sqrt[3] - 1)*(s^2/(2*r^2))   Int[1/Sqrt[ 
a + b*x^6], x], x] - Simp[1/(2*r^2)   Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4)/S 
qrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]
 

rule 851
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = 
 Denominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^ 
n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && 
FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 1931
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^(j - 1)*(c*x)^(m - j + 1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p 
+ 1))), x] - Simp[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1)))   I 
nt[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] 
 &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[ 
m + j*p + 1, 0]
 

rule 1938
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^IntPart[m]*(c*x)^FracPart[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(F 
racPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]))   Int[x^(m + j* 
p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !Inte 
gerQ[p] && NeQ[n, j] && PosQ[n - j]
 

rule 2420
Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = 
 Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqr 
t[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d*s*x* 
(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2 
*r^2*Sqrt[(r*x^2*(s + r*x^2))/(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]) 
)*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 
 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 
- Sqrt[3])*d, 0]
 
3.2.2.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.37 (sec) , antiderivative size = 1083, normalized size of antiderivative = 2.18

method result size
default \(\text {Expression too large to display}\) \(1083\)
risch \(\text {Expression too large to display}\) \(1083\)
elliptic \(\text {Expression too large to display}\) \(1083\)

input
int(1/x/(b*x^4+a*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2*(b*x^3+a)/a/(x*(b*x^3+a))^(1/2)+2*b/a*(x*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I* 
3^(1/2)/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2) 
^(1/3))+(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*((-3/2/b*(-a 
*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I 
*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(x-1/b*(-a*b^2)^( 
1/3))^2*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^ 
2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(- 
a*b^2)^(1/3)))^(1/2)*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^( 
1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/ 
3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(((-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))/b*(-a*b^2)^(1/3)+1/b^2*(-a*b^2)^(2/3))/(-3/2/b*(-a*b^2)^( 
1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*b/(-a*b^2)^(1/3)*EllipticF(((-3/2/b*( 
-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2 
*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2),((3/2/b*(-a*b^2 
)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2 
)/b*(-a*b^2)^(1/3))/(1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/ 
(3/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+(1/2/b*(-a*b 
^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*EllipticE(((-3/2/b*(-a*b^2)^(1/3 
)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2),((3/2/b*(-a*b^2)^(1/3)+1...
 
3.2.2.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.05 \[ \int \frac {1}{x \sqrt {a x+b x^4}} \, dx=\frac {2 \, {\rm weierstrassZeta}\left (0, -\frac {4 \, b}{a}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right )\right )}{\sqrt {a}} \]

input
integrate(1/x/(b*x^4+a*x)^(1/2),x, algorithm="fricas")
 
output
2*weierstrassZeta(0, -4*b/a, weierstrassPInverse(0, -4*b/a, 1/x))/sqrt(a)
 
3.2.2.6 Sympy [F]

\[ \int \frac {1}{x \sqrt {a x+b x^4}} \, dx=\int \frac {1}{x \sqrt {x \left (a + b x^{3}\right )}}\, dx \]

input
integrate(1/x/(b*x**4+a*x)**(1/2),x)
 
output
Integral(1/(x*sqrt(x*(a + b*x**3))), x)
 
3.2.2.7 Maxima [F]

\[ \int \frac {1}{x \sqrt {a x+b x^4}} \, dx=\int { \frac {1}{\sqrt {b x^{4} + a x} x} \,d x } \]

input
integrate(1/x/(b*x^4+a*x)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(b*x^4 + a*x)*x), x)
 
3.2.2.8 Giac [F]

\[ \int \frac {1}{x \sqrt {a x+b x^4}} \, dx=\int { \frac {1}{\sqrt {b x^{4} + a x} x} \,d x } \]

input
integrate(1/x/(b*x^4+a*x)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(b*x^4 + a*x)*x), x)
 
3.2.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt {a x+b x^4}} \, dx=\int \frac {1}{x\,\sqrt {b\,x^4+a\,x}} \,d x \]

input
int(1/(x*(a*x + b*x^4)^(1/2)),x)
 
output
int(1/(x*(a*x + b*x^4)^(1/2)), x)